Chapter 07 Routing Basics and Static Routing

What is Routing?

 Routing Means: finding all possible paths to destination networks and selecting the best path

Routing methods:

- Static Routing
- Dynamic Routing

Routing Table Structure

- Routing Table is stored in RAM and contains information about:
 - Directly connected networks this occurs when a device is connected to another router interface
 - Remotely connected networks this is a network that is not directly connected to a particular router
 - Detailed information about the networks include source of information, network address & subnet mask, and IP address of next-hop router
- show ip route command is used to view a routing table

Router interfaces

- Each router interface is a member of a different network
- Activated using the no shutdown command

Dymanic Routing

Maintaining routing tables

-Dynamic routing protocols are used to share routing information with other router & to maintain and up date their own routing table.

IP routing protocols. Example of routing protocols include:

Routing Table Structure

- Routing Table Principles
 - 3 principles regarding routing tables:
 - Every router makes its decisions alone, based on the information it has in its routing table.
 - Different routing table may contain different information.

A routing table can tell how to get to a destination but not how to get back.

Routing Principle 3 in Action

R1 has a route to PC2's network.

Static Routing

Purpose of a static route

A manually configured route used when routing from a network to a stub network

IP route command

- To configure a static route use the following command: ip route
- Example:
 - -Router(config)# ip route network-address subnet-mask {ipaddress | exit-interface }

```
Router(config) # ip route network-address subnet-mask
{ip-address | exit-interface }
```

Parameter	Description
network-address	Destination network address of the remote network to be added to the routing table.
subnet-mask	Subnet mask of the remote network to be added to the routing table. The subnet mask can be modified to summarize a group of networks.
ip-address	Commonly referred to as the next-hop router's IP address.
exit-interface	Outgoing interface that is used to forward packets to the destination network.

Configuring routes to 2 or more remote networks

Use the following commands for R1

-R1(config)#ip route 192.168.1.0 255.255.255.0 172.16.2.2

-R1(config)#ip route 192.168.2.0 255.255.255.0 172.16.2.2

R1 static route to R2's LAN

Verifying the Static Route Configuration

- -Use the following commands
 - Step 1 show running-config
 - Step 2 verify static route has been entered correctly
 - Step 3 show ip route
 - Step 4 verify route was configured in routing table
 - Step 5 issue ping command to verify packets can reach destination and that Return path is working

Summary and Default Route

Default Static Route

•This is a route that will match all packets. Stub routers that have a number of static routes all exiting the same interface are good candidates for a default route.

-Like route summarization this will help reduce the size of the routing table

Configuring a default static route

Similar to configuring a static route. Except that destination IP address and subnet mask are all zeros

Example:

-Router(config)# ip route 0.0.0.0 0.0.0.0 [exit-interface | ip-address]

Introduction to Dynamic Routing Protocol

Dynamic Routing Protocols

Routing Protocols Evolution and Classification

Dynamic Routing Protocols

Function(s) of Dynamic Routing Protocols:

- -Dynamically share information between routers.
- -Automatically update routing table when topology changes.
- -Determine best path to a destination.

Routers Dynamically Pass Updates

Dynamic Routing Protocols

The purpose of a dynamic routing protocol is to:

- -Discover remote networks
- -Maintaining up-to-date routing information
- -Choosing the best path to destination networks

-Ability to find a new best path if the current path is no longer available

Routing Protocol Operation

Routing protocols are used to exchange routing information between the routers.

Classifying Routing Protocols

 Dynamic routing protocols are grouped according to characteristics. Examples include:

 Autonomous System is a group of routers under the control of a single authority.

Classifying Routing Protocols

- Interior Gateway Protocols (IGP)

Used for routing inside an autonomous system & used to route within the individual networks themselves.

- Exterior Gateway Protocols (EGP)

Used for routing between autonomous systems

IGP vs. EGP Routing Protocols

Classifying Routing Protocols

 IGP: Comparison of Distance Vector & Link State Routing Protocols

Distance vector

- Routing updates from / to neighbors only.
- incomplete view of network topology.
- Generally, periodic updates.

Link state

- complete view of network topology is created.
- updates are not periodic.

Routing Protocols Metrics

- The Metric Field in the Routing Table
- Metric used for each routing protocol
 - -RIP hop count
 - -IGRP & EIGRP Bandwidth (used by default), Delay (used by default), Load, Reliability,MTU
 - -IS-IS & OSPF Cost (Bandwidth (Cisco's implementation))

R2# sh	now ip route
<outp< td=""><td>but omitted></td></outp<>	but omitted>
Gatew	way of last resort is not set
R	192.168.1.0/24 [120/1] via 192.168.2.1, 00:00:24, Serial0/0
C	192.168.2.0/24 is directly connected, Serial0/0
C	192.168.3.0/24 is directly connected, FastEthernet0/0
C	192.168.4.0/24 is directly connected, Serial0/1
R	192.168.5.0/24 [120/1] via 192.168.4.1, 00:00:26, Serial0/1
R	192.168.6.0/24 [120/1] via 192.168.2.1, 00:00:24, Serial0/0
R	[120/1] via 192.168.4.1, 00:00:26, Serial0/1 192.168.7.0/24 [120/1] via 192.168.4.1, 00:00:26, Serial0/1
R	192.168.8.0/24 [120/2] via 192.168.4.1, 00:00:26, Serial0/1

It is 2 hops from R2 to 192.168.8.0/24

Administrative Distance of a Route

Purpose of a metric

It's a calculated value used to determine the best path to a destination

Purpose of Administrative Distance

It's a numeric value that specifies the preference of a particular route

Comparing Administrative Distances

Administrative Distance of a Route

Dynamic Routing Protocols

Unknown

Route source	Default AD	
Connected interface	0	
Static	1	
EIGRP summary route	5	
eBGP	20	
EIGRP (Internal)	90	
IGRP	100	
OSPF	110	
IS - IS	115	
RIP	120	
EIGRP (External)	170	
iBGP	200	

255

Default Administrative Distances

Link-State Routing Protocols

Link-State Routing

Dikjstra's algorithm also known as the shortest path first (SPF) algorithm

Dijkstra's Shortest Path First Algorithm

Shortest Path for host on R2 LAN to reach host on R3 LAN: R2 to R1 (20) + R1 to R3 (5) + R3 to LAN (2) = 27

Link-State Routing

The shortest path to a destination is not necessarily the path with the least number of hops

Introduction to the SPF Algorithm

Destination	Shortest Path	Cost
R2 LAN	R1 to R2	22
R3 LAN	R1 to R3	7
R4 LAN	R1 to R3 to R4	17
R5 LAN	R1 to R3 to R4 to R5	27